420 research outputs found

    Kinematic Effects of Tidal Interaction on Galaxy Rotation Curves

    Get PDF
    We use self-consistent N-body models, in conjunction with models of test particles moving in galaxy potentials, to explore the initial effects of interactions on the rotation curves of spiral galaxies. Using nearly self-consistent disk/bulge/halo galaxy models (Kuijken & Dubinski 1995), we simulate the first pass of galaxies on nearly parabolic orbits; we vary orbit inclinations, galaxy halo masses and impact parameters. For each simulation, we mimic observed rotation curves of the model galaxies. Transient interaction-induced features of the curves include distinctly rising or falling profiles at large radii and pronounced bumps in the central regions. Remarkably similar features occur in our statistical sample of optical emission-line rotation curves of spiral galaxies in tight pairs and n-tuples.Comment: 9 pages, 2 figures, accepted for publication in ApJ Letter

    SAURON's Challenge for the Major Merger Scenario of Elliptical Galaxy Formation

    Full text link
    The intrinsic anisotropy delta and flattening epsilon of simulated merger remnants is compared with elliptical galaxies that have been observed by the SAURON collaboration, and that were analysed using axisymmetric Schwarzschild models. Collisionless binary mergers of stellar disks and disk mergers with an additional isothermal gas component, neglecting star formation cannot reproduce the observed trend delta = 0.55 epsilon (SAURON relationship). An excellent fit of the SAURON relationship for flattened ellipticals with epsilon >= 0.25 is however found for merger simulations of disks with gas fractions >= 20%, including star formation and stellar energy feedback. Massive black hole feedback does not strongly affect this result. Subsequent dry merging of merger remnants however does not generate the slowly-rotating SAURON ellipticals which are characterized by low ellipticities epsilon < 0.25 and low anisotropies. This indicates that at least some ellipticals on the red galaxy sequence did not form by binary mergers of disks or early-type galaxies. We show that stellar spheroids resulting from multiple, hierarchical mergers of star-bursting subunits in a cosmological context are in excellent agreement with the low ellipticities and anisotropies of the slowly rotating SAURON ellipticals and their observed trend of delta with epsilon. The numerical simulations indicate that the SAURON relation might be a result of strong violent relaxation and phase mixing of multiple, kinematically cold stellar subunits with the angular momentum of the system determining its location on the relation.Comment: 13 pages, 3 figures, submitted to Ap

    NGC 4138 - A Case Study in Counterrotating Disk Formation

    Get PDF
    The Sa(r) galaxy NGC 4138 has been recently found to contain an extensive counterrotating disk which appears to be still forming. Up to a third of the stars in the disk system may be on retrograde orbits. A counterrotating ring of H II regions, along with extended counterrotating H I gas, suggests that the retrograde material has been recently acquired in the gas phase and is still trickling in. Using numerical simulations, we have attempted to model the process by which the counterrotating mass has been accreted by this galaxy. We investigate two possibilities: continuous retrograde infall of gas, and a retrograde merger with a gas-rich dwarf galaxy. Both processes are successful in producing a counterrotating disk of the observed mass and dimensions without heating up the primary significantly. Contrary to our experience with a fiducial cold, thin primary disk, the gas-rich merger works well for the massive, compact primary disk of NGC 4138 even though the mass of the dwarf galaxy is a significant fraction of the mass of the primary disk. Although we have restricted ourselves mainly to coplanar infall and mergers, we report on one inclined infall simulation as well. We also explore the possibility that the H-alpha ring seen in the inner half of the disk is a consequence of counterrotating gas clouds colliding with corotating gas already present in the disk and forming stars in the process.Comment: To appear in ApJ, 21 pages, LaTeX (aaspp4) format, 17 figs (gzipped tar file) also available at ftp://bessel.mps.ohio-state.edu/pub/thakar/cr2/ or at http://www-astronomy.mps.ohio-state.edu/~thakar

    A Conceptual Network for Web Representation of Design Knowledge

    Full text link

    Color Gradients and Surface Brightness Profiles of Galaxies in the Hubble Deep Field-North

    Get PDF
    We fit elliptical isophotes to the Hubble Deep Field-North WFPC-2 and NICMOS data to study the rest-frame UV_{218}-U_{300} color profiles and rest-frame B surface brightness profiles of 33 intermediate redshift galaxies (0.5 <= z <= 1.2) with I_{814} < 25 and 50 high redshift galaxies (2.0 <= z <= 3.5) with H_{160}< 27. From the weighted least-squares fit to the color profiles we find that, at intermediate redshifts, the galaxies possess negative color gradients indicating a reddening towards the center of the profile similar to local samples whereas, at high redshifts, the galaxies possess positive color gradients. This indicates that star formation is more centrally concentrated in the distant galaxy sample which differs from the prevalent mode of extended disk star formation that we observe in the local universe. Additionally, we find that it is critical to correct for PSF effects when evaluating the surface brightness profiles since at small scale lengths and faint magnitudes, an r^{1/4} profile can be smoothed out substantially to become consistent with an exponential profile. After correcting for PSF effects, we find that at higher look-back time, the fraction of galaxies possessing exponential profiles have slightly decreased while the fraction of galaxies possessing r^{1/4} profiles have slightly increased. Our results also suggest a statistically insignificant increase in the fraction of peculiar/irregular type galaxies. We compare our results with recent semi-analytical models which treat galaxy formation and evolution following the cold dark matter hierarchical framework.Comment: 31 pages, 10 JPEG figures. To be published in AJ Vol. 124, October 200

    Kinematic Structure of Merger Remnants

    Full text link
    We use numerical simulations to study the kinematic structure of remnants formed from mergers of equal-mass disk galaxies. In particular, we show that remnants of dissipational mergers, which include the radiative cooling of gas, star formation, feedback from supernovae, and the growth of supermassive black holes, are smaller, rounder, have, on average, a larger central velocity dispersion, and show significant rotation compared to remnants of dissipationless mergers. The increased rotation speed of dissipational remnants owes its origin to star formation that occurs in the central regions during the galaxy merger. We have further quantified the anisotropy, three-dimensional shape, minor axis rotation, and isophotal shape of each merger remnant, finding that dissipational remnants are more isotropic, closer to oblate, have the majority of their rotation along their major axis, and are more disky than dissipationless remnants. Individual remnants display a wide variety of kinematic properties. A large fraction of the dissipational remnants are oblate isotropic rotators. Many dissipational, and all of the dissipationless, are slowly rotating and anisotropic. The remnants of gas-rich major mergers can well-reproduce the observed distribution of projected ellipticities, rotation parameter (V/\sigma)*, kinematic misalignments, Psi, and isophotal shapes. The dissipationless remnants are a poor match to this data. Our results support the merger hypothesis for the origin of low-luminosity elliptical galaxies provided that the progenitor disks are sufficiently gas-rich, however our remnants are a poor match to the bright ellipticals that are slowly rotating and uniformly boxy.Comment: 22 pages, 17 figures, accepted to Ap

    Clustering Analyses of 300,000 Photometrically Classified Quasars--I. Luminosity and Redshift Evolution in Quasar Bias

    Full text link
    Using ~300,000 photometrically classified quasars, by far the largest quasar sample ever used for such analyses, we study the redshift and luminosity evolution of quasar clustering on scales of ~50 kpc/h to ~20 Mpc/h from redshifts of z~0.75 to z~2.28. We parameterize our clustering amplitudes using realistic dark matter models, and find that a LCDM power spectrum provides a superb fit to our data with a redshift-averaged quasar bias of b_Q = 2.41+/-0.08 (P<χ2=0.847P_{<\chi^2}=0.847) for σ8=0.9\sigma_8=0.9. This represents a better fit than the best-fit power-law model (ω=0.0493±0.0064θ0.928±0.055\omega = 0.0493\pm0.0064\theta^ {-0.928\pm0.055}; P<χ2=0.482P_{<\chi^2}=0.482). We find b_Q increases with redshift. This evolution is significant at >99.6% using our data set alone, increasing to >99.9999% if stellar contamination is not explicitly parameterized. We measure the quasar classification efficiency across our full sample as a = 95.6 +/- ^{4.4}_{1.9}%, a star-quasar separation comparable with the star-galaxy separation in many photometric studies of galaxy clustering. We derive the mean mass of the dark matter halos hosting quasars as MDMH=(5.2+/-0.6)x10^{12} M_solar/h. At z~1.9 we find a 1.5σ1.5\sigma deviation from luminosity-independent quasar clustering; this suggests that increasing our sample size by a factor of 1.8 could begin to constrain any luminosity dependence in quasar bias at z~2. Our results agree with recent studies of quasar environments at z < 0.4, which detected little luminosity dependence to quasar clustering on proper scales >50 kpc/h. At z < 1.6, our analysis suggests that b_Q is constant with luminosity to within ~0.6, and that, for g < 21, angular quasar autocorrelation measurements are unlikely to have sufficient statistical power at z < 1.6 to detect any luminosity dependence in quasars' clustering.Comment: 13 pages, 9 figures, 2 tables; uses amulateapj; accepted to Ap

    Statistical properties of ultraluminous IRAS galaxies from an HST imaging survey

    Get PDF
    We perform photometric measurements on a large HST snapshot imaging survey sample of 97 ultraluminous infrared galaxies (ULIRGs). We select putative nuclei from bright clumps in all the sample targets, mainly based on a quantitative criterion of I-band luminosity as well as the global and local morphological information. All the sources are then classified into three categories with multiple, double and single nucleus/nuclei. The resultant fractions of multiple, double and single nucleus/nuclei ULIRGs are 18%, 39% and 43%, respectively. This supports the multiple merger scenario as a possible origin of ULIRGs, in addition to the commonly-accepted pair merger model. Further statistical studies indicate that the AGN fraction increases from multiple (36%) to double (65%) and then to single (80%) nucleus/nuclei ULIRGs. For the single nucleus category, there is a high luminosity tail in the luminosity distribution, which corresponds to a Seyfert 1/QSO excess. This indicates that active galactic nuclei tend to appear at final merging stage. For multiple/double nuclei galaxies, we also find a high fraction of very close nucleus pairs (e.g., 3/4 for those separated by less than 5 kpc). This strengthens the conclusion that systems at late merging phase preferentially host ULIRGs.Comment: 38 pages, 21 figures, to be published in A

    A gas-rich nuclear bar fuelling a powerful central starburst in NGC 2782

    Full text link
    We present evidence that the peculiar interacting starburst galaxy NGC 2782 (Arp 215) harbors a gas-rich nuclear stellar bar feeding an M82-class powerful central starburst, from a study based on OVRO CO (J=1->0) data, WIYN BVR & Halpha observations, along with available NIR images, a 5 GHz RC map and HST images. NGC 2782 harbors a clumpy, bar-like CO feature of radius ~ 7.5'' (1.3 kpc) which leads a nuclear stellar bar of similar size. The nuclear CO bar is massive: it contains ~2.5x10**9 M_sun of molecular gas, which makes up ~ 8 % of the dynamical'mass present within a 1.3 kpc radius. Within the CO bar, emission peaks in two extended clumpy lobes which lie on opposite sides of the nucleus, separated by ~ 6'' (1 kpc). Between the CO lobes, in the inner 200 pc radius, resides a powerful central starburst which is forming stars at a rate of 3 to 6 M_sun yr-1. While circular motions dominate the CO velocity field, the CO lobes show weak bar-like streaming motions on the leading side of the nuclear stellar bar, suggestive of gas inflow. We estimate semi-analytically the gravitational torque from the nuclear stellar bar on the gas, and suggest large gas inflow rates from the CO lobes into the central starburst. These observations, which are amongst the first ones showing a nuclear stellar bar fuelling molecular gas into an intense central starburst, are consistent with simulations and theory which suggest that nuclear bars provide an efficient way of transporting gas closer to the galactic center to fuel central activity. Furthermore, several massive clumps are present at low radii, and dynamical friction might produce further gas inflow. We suggest that the nuclear molecular gas bas and central activity will be very short-lived, likely disappearing within 5x10**8 years.Comment: Accepted by the Astrophysical Journal, 10 pages, Latex with emulateapj.sty, apjfonts.sty, 10 postscript & 2 gif figure

    The Importance of Satellite Quenching for the Build-Up of the Red Sequence of Present Day Galaxies

    Full text link
    In the current paradigm, red sequence galaxies are believed to have formed as blue disk galaxies that subsequently had their star formation quenched. Since red-sequence galaxies typically have an early-type morphology, the transition from the blue to the red sequence also involves a morphological transformation. In this paper we study the impact of transformation mechanisms that operate only on satellite galaxies, such as strangulation, ram-pressure stripping and galaxy harassment. Using a large galaxy group catalogue constructed from the SDSS, we compare the colors and concentrations of satellites galaxies to those of central galaxies of the same stellar mass, adopting the hypothesis that the latter are the progenitors of the former. On average, satellites are redder and more concentrated than central galaxies of the same stellar mass. Central-satellite pairs that are matched in both stellar mass and color, however, show no average concentration difference, indicating that the transformation mechanisms affect color more than morphology. The color and concentration differences of matched central-satellite pairs are completely independent of the halo mass of the satellite galaxy, indicating that satellite-specific transformation mechanisms are equally efficient in haloes of all masses. This strongly favors strangulation as the main quenching mechanism for satellite galaxies. Finally, we determine the relative importance of satellite quenching for the build-up of the red sequence. We find that roughly 70 percent of red sequence satellite galaxies with a stellar mass of 10^9 Msun had their star formation quenched as satellites. This drops rapidly to zero with increasing stellar mass, indicating that a significant fraction of red satellites were already quenched before they became a satellite.Comment: 14 pages, 10 figures. Submitted for publication in MNRA
    corecore